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Hyperbaric oxygen therapy (HBOT) is the use of greater than atmospheric pressure 
oxygen as a drug to treat basic disease processes and their diseases (1).  In the 
simplest terms HBOT is a pharmaceutical or prescription medication similar to the 
thousands of medications routinely prescribed by physicians everyday throughout the 
world. The key differences with HBOT, however, are that it is a drug that treats basic 
disease processes that are common to every disease, that it acts as a repair drug in 
these processes, and that it replaces an essential element of life for which there is no 
substitute, oxygen.  This effectiveness in treating basic common disease processes 
explains the ability of HBOT to act in a generic beneficial fashion to a multitude of 
diseases, including and especially traumatic injuries to all areas of the body.  
 
HBOT has both acute and chronic drug effects.  HBOT exerts these effects by obeying 
the Universal Gas Laws, the most important of which is Henry’s Law (2).  Henry’s Law 
states that the concentration of a gas in solution is proportional to the pressure of that 
gas interfacing with the solution.  For example, the amount of oxygen dissolved in a 
glass of water is directly proportional to the amount of oxygen in the air.  Similarly, the 
amount of oxygen dissolved in our blood is directly proportional to the amount of oxygen 
we are breathing.  According to Henry’s Law, there is a very small amount of oxygen 
dissolved in the liquid portion of the blood when breathing air (21% oxygen) at sea 
level.  The remainder and majority of oxygen is bound to hemoglobin in the red blood 
cells giving a 98% saturation of hemoglobin.  As we increase the amount of oxygen in 
inspired air by applying a nasal cannula or facemask of pure oxygen the final 2% of 
hemoglobin is quickly bound by oxygen.  All of the remaining available oxygen 
interfaces with and is dissolved in the liquid portion of the blood.  Once we reach 15 
liters/minute of supplemental oxygen by a tight fitting aviator’s mask or non-rebreather 
mask we have reached the maximum amount of oxygen that can be dissolved in blood 
by natural means.  However, this is not the absolute limit.  By placing a patient in an 
enclosed chamber, increasing the pressure above ambient pressure, and giving the 
patient pure oxygen we can cause an increase in dissolved oxygen in blood in direct 
proportion to the pressure increase.  
 
At the point of three atmospheres absolute of pure oxygen (3 ATA), just slightly more 
than the amount the U.S. Navy has used for 50 years in the treatment of divers with 
decompression sickness, we can dissolve enough oxygen in the plasma to render red 



blood cells useless. Under these conditions as blood passes through the tiniest blood 
vessels tissue cells will extract all of the dissolved oxygen in the blood without touching 
the oxygen bound to hemoblogin.  This amount of dissolved oxygen alone can exceed 
the amount necessary for the tissue to sustain life.  In other words, you don’t need red 
blood cells for life at 3 ATA of 100% oxygen.  This physical phenomenon was proven in 
a famous experiment in 1960 and published in the first edition of the Journal of 
Cardiovascular Surgery by Dr. Boerema of the Netherlands (3).  Dr. Boerema 
anesthetized pigs, removed nearly all of their blood, and replaced it with salt water while 
he compressed them to 3 ATA.  At 3 ATA in a hyperbaric chamber pigs with essentially 
no blood were completely alive and well.  Dr. Boerema then removed the saline, 
replaced the blood, and brought the pigs to surface where they remained alive and 
well.  This phenomenon has been proven effective in other experiments and is the basis 
for clinical use in extreme blood loss anemia (4).  The best examples are Jehovah’s 
Witness patients who have lost massive amounts of blood and because of religious 
proscription are unable to receive blood transfusions.  These patients are kept alive 
over weeks with repetitive HBOT until their blood system is able to naturally produce 
enough blood to sustain life.  This ability to maintain life without blood has obvious 
potential to battlefield casualties awaiting transfusion.   
 
As a result of Henry’s Law HBOT is able to exert a variety of drug effects on acute 
pathophysiologic processes.  These have been well documented over the past 50 years 
and include reduction of hypoxia (5, 6), inhibition of reperfusion injury (7), reduction of 
edema (8), blunting of systemic inflammatory responses (9), and a multitude of others 
(10). In addition, repetitive HBOT in wound models acts as a DNA stimulating drug to 
effect tissue growth (11, 12).  HBOT has been shown to interact with the DNA of cells in 
damaged areas to begin the production of repair hormones, proteins, and cell surface 
receptors that are stimulated by the repair hormones (13, 14).  The resultant repair 
processes include replication of the cells responsible for tissue strength (fibroblasts) 
(15), new blood vessel growth (16, 17), bone healing and strengthening (18), and new 
skin growth (19).  
 
To best understand the effectiveness and potential of HBOT one must understand basic 
disease processes, commonly referred to as pathophysiologic processes.  Every insult 
or injury to living organisms, particularly human beings, is distinct and different, and can 
be characterized by the type of force, energy, or peculiar nature of that insult. For 
example, a blast force is different from a blunt force, an electrical injury, a toxic injury, a 
biological injury, infectious injury, thermal injury, nuclear injury, gunshot wound, stab 
wound, burn, or even a surgical wound.  Regardless of the exact nature and 
idiosyncratic character of the injury, however, every acute injury has a common 
secondary injury called the inflammatory process (20).  This secondary injury in fact 
causes more damage than the primary injury.  Moreover, it is a universal process 
common to every human being regardless of race, color, creed, size, gender, or 
genetics.  The beauty of hyperbaric oxygen therapy is its ability to powerfully impact the 
inflammatory reaction and its component processes like no other drug in the history of 
medicine.  
 



The inflammatory process begins with tissue injury.  The injury can be as innocuous as 
apposition of tissues that normally do not interface against one another, such as spinal 
bony compression of a nerve root due to a degenerative disk. Most often, however, 
tissue injury results from much larger forces such as the type seen in military conflict. 
Once tissue is disrupted proteins, fat, other molecules, and disrupted tissue is exposed 
to the circulation.  In addition, blood vessels are damaged both directly by mechanical 
forces and indirectly by tissue fragments that interact with the vessel walls.  The net 
effect is bleeding from broken blood vessels and dilation of the unbroken blood vessels. 
As the vessels dilate, blood pressure forces the liquid portion of the blood out of the 
vessels. The extravasated fluid, now referred to as edema, exerts its own pressure that 
collapses blood vessels, leading to a reduction of blood flow.  This compounds the 
reduction in blood flow already caused by disrupted blood vessels and bleeding. In 
addition, white blood cells in the circulation are attracted to the damaged tissue by 
molecules released from the damaged tissue.  The white blood cells traverse the blood 
vessel walls in a process called emigration (21) and disgorge themselves of their 
digestive enzymes.  These enzymes cause further tissue damage in an attempt to clean 
up the primary damage, but also cause constriction of blood vessels to limit further 
bleeding and leakage of fluid.    
 
The cumulative effect of all of these processes, including tissue injury, fluid leakage, 
blood vessel disruption, bleeding, white blood cell accumulation, indiscriminate release 
of digestive enzymes, and blood vessel constriction is a reduction in blood flow and 
most importantly, reduction in the crucial element for sustenance of life, oxygen.  With 
the reduction of oxygen, blood vessel walls become activated as do the white blood cell 
surface proteins.  Activation of the white blood cell surface proteins results in their 
prominence from the cell surface in a manner similar to a sail rising on a sailboat.  This 
drag slows down the white blood cells, resulting in their margination (22) to the walls of 
blood vessels in an area of injury.  The white blood cells then stick to the walls of the 
blood vessels and generate tiny blood clots.  This cascade of events is known as 
reperfusion injury (23).  The white blood cells now emigrate and compound the process 
described above, resulting in greater reduction in blood flow and hypoxia.  Thus, low 
oxygen leads to further tissue damage, leakage of blood vessels, clotting of blood 
vessels, and more hypoxia, in essence, the “vicious cycle” described by Holbach (24).  
This is the sequence of events at the site of every bullet, shrapnel, blast, blunt, 
electrical, etc. impact in every soldier injured in battle.  Finally, if there is enough 
bleeding, clotting of blood vessels, and blood vessel leakage of fluid in the body to drop 
blood pressure the entire body becomes activated by hypoxia, undergoes reperfusion 
injury, and the soldier experiences shock, a critical point of no return for most human 
beings.  
 
In the past 12 years scientific research has unequivocally shown that the only drug to 
completely or nearly completely reverse the reperfusion injury process is hyperbaric 
oxygen.  In multiple experiments with different animal models, different organ systems, 
different types of blood flow reduction or absence (e.g., heart attack, stroke, cardiac 
arrest, carbon monoxide, tourniqueting of an extremity, etc.) timely HBOT within hours 
of reperfusion injury has been shown to completely or nearly completely reverse 



reperfusion injury (25).  The mechanism of action has been partly elucidated and shown 
to be an effect on the white blood cell surface proteins and the inside lining of the blood 
vessels to which the white blood cells stick (26, 27).  The net result is a reduction in 
clotting, blood vessel leakage, and an increase in oxygenation.  In addition, HBOT has 
been shown to constrict blood vessels (28), thus reducing bleeding and leakage of fluid 
that causes swelling and further compression of blood vessels.  This breaks the vicious 
cycle described above.  Simultaneously, due to its ability to dissolve large amounts of 
oxygen in the liquid portion of the blood, oxygen enriched plasma is able to reach 
damaged areas of tissue not accessible by normal blood flow and restore oxidative 
function to these areas.  The net result is a dramatic reduction in the secondary injury 
process, improved viability of tissue that would otherwise die, and salvage of the tissue 
and patient.  
 
The goal of the DoD-BIRR Battle Project is to use timely hyperbaric oxygen therapy to 
hyperacutely interrupt the inflammatory reaction and its injurious cascade, reverse 
hypoxia that results from disruption of blood vessels and bleeding, restore and prolong 
tissue viability, and prevent the secondary injury processes that are so devastating. 
HBOT is uniquely suited to battlefield casualties for its beneficial effects on five 
processes or conditions: acute severe traumatic brain injury (TBI), extremity wounds 
with crush injury and compartment syndrome, burns, acute hemorrhage, and 
reperfusion injury.    
 
The literature for HBOT in acute severe TBI is amongst the strongest in hyperbaric 
medicine.  HBOT effects on brain injury pathophysiology have been well-documented 
(29-37).  In humans Holbach (38) demonstrated improved glucose metabolism in acute 
severe TBI patients with one HBOT.  He followed this study with a controlled trial of 
HBOT in TBI patients with the acute mid-brain syndrome (24).  Using 1-7 HBOT’s, he 
demonstrated an overall 55% reduction in mortality and 81% improvement in short-term 
outcome (10d post TBI).  These dramatic findings were duplicated in the largest study 
performed to date, the Rockswold study in 1992 (39).  Rockswold showed that HBOT 
induced a 47% reduction in mortality overall and a 59% reduction for the most severely 
injured, nearly identical to Holbach.  Rockswold followed his study with two additional 
studies that reinforced their and Holbach’s findings.  The first one in 2001 (40), showed 
that a single HBOT improved brain metabolism (similar to Holbach-38) and re-coupled 
brain blood flow and metabolism in severely injured human brain FOR THE FIRST 
TIME IN THE HISTORY OF SCIENCE AND MEDICINE.   
 
This was a profound discovery and was consistent with all of the previous animal and 
human experimentation performed with HBOT in acute TBI.  The second study, an 
animal study (41), proved that HBOT could increase oxygen consumption, brain tissue 
oxygen levels, and mitochondrial function (the organelle that is the energy center for 
every cell in the body).  Additional randomized controlled studies by Artru (80) and Ren 
(81) at somewhat higher pressures have shown the same result as Rockswold and 
Holbach.  Taken collectively the multitude of animal and human studies strongly argue 
that HBOT delivered within hours to days of acute severe TBI unequivocally reduces 
mortality and improves outcome.  The reduction in mortality has never been equaled by 



any therapy in the medical armamentarium except possibly the ambulance, or in the 
case of the military, the helicopter.  Adding HBOT to helicopter evacuation of casualties 
should further decrease morbidity and mortality of injured soldiers.  This is the 
foundation of the DOD-BIRR Project.  
 
The second important impact of HBOT in acute battlefield trauma is the effect on 
extremity injuries which include crush injury, major blood vessel disruption, and 
compartment syndrome. Extremity gunshot, blast, and other high force military injuries 
cause massive tissue destruction, hypoxia, and swelling.  This swelling leads to what is 
called compartment syndrome where the various muscle compartments that are bound 
by their dividing tissues (fascia and bone) increase in pressure and occlude blood 
vessels.  The subsequent lack of blood flow causes more hypoxia leading to the “vicious 
cycle” described above in traumatic brain injury.  A vicious cycle in the extremities 
results in death of the tissue, loss of function, and often loss of limb.  This sequence of 
events is often complicated and worsened by disruption of major blood vessels that 
further lowers oxygen levels.  Multiple animal studies have demonstrated a benefit of 
HBOT in crush injury, lack of blood flow, and compartment syndrome (42-47).   
A human study in 1987 (48) reinforced these results by showing limb salvage in 
traumatized extremities with low blood flow who were at risk for amputation after failed 
surgical therapy. Stronger studies in 1989 (49) and 1996 (50) duplicated the previous 
animal and human data. In particular the study by Bouachour (50) in open fractures and 
crush injuries demonstrated significantly improved complete healing and bone healing 
with a reduction in additional surgical procedures.  Actual application to extremity war 
injuries has been reported by three separate authors with good results (51, 52, 53).  
Most of these studies, especially the war studies, involved damage to major blood 
vessels with its accompanying loss of blood flow and oxygen until surgical repair was 
complete.  Despite this arterial damage, the net result in most of the studies is a 
reduction in major amputations.  Very likely HBOT ameliorates compartment syndrome 
by reducing edema and reversing hypoxia.  Its most profound effect, however, maybe 
on prevention of compartment syndrome by impacting reperfusion injury.  Reperfusion 
injury is a normal feature of direct tissue injury, but it can be compounded by the 
secondary reperfusion injury from tourniqueting a massively bleeding extremity.  HBOT 
delivered within the first few hours of injury could significantly inhibit reperfusion injury 
(7, 25, 26) and prevent the major delayed complications of R.I.: infection, compartment 
syndrome, and amputation.  In addition, HBOT could prevent the reperfusion injury that 
occurs during surgical repair of the injured extremity as the extremity is tourniqueted 
during surgery to allow blood vessel reconstruction and bone repair.    
HBOT has shown benefit in acute thermal burns since 1965 when Wada discovered 
that burned patients treated for carbon monoxide poisoning from a coal mine fire 
experienced accelerated healing of their burns (54).  Since that time a plethora of 
studies in animals has shown improved healing (55), reversal of hypoxia (56), reduction 
of inflammation/reperfusion injury (57, 58), burn edema (59, 60, 61, 62), increased rate 
of skin growth (63), improvement in the blood vessels (63, 64, 65), prevention of 
progression of deep second degree burns to third degree burns (62, 65, 66, 67), 
reduction in burn shock (68)and a decrease in infections (55).  Studies in humans have 
mirrored the animal literature with clear or likely benefit in 19 of 21 studies (69), 



demonstrating a drastic reduction in healing time for deep second degree burns (70-
73).  The effect on third degree burns (all layers of the skin) is less apparent since 
modern burn care has evolved to early surgical removal of burned tissue.  Immediate 
HBOT in these cases, however, could likely minimize the amount of questionable 
second degree burned tissue that would be inadvertently excised with the third degree 
burn.  This could be important in burns of the face, ears, hands and feet where tissue 
preservation is critical.  Lastly, early intervention with HBOT has reduced the cost of 
burn treatment (73).  Hyperacute HBOT at a battlefield MASH station should duplicate 
the civilian experience and have a dramatic impact on the treatment of burned soldiers.  
The fourth significant impact of HBOT on military casualties would be in the treatment of 
massive hemorrhage.  As mentioned above in the example of Jehovah’s Witness 
patients HBOT can be used as a blood substitute until definitive treatment is available 
(74).  A large volume of animal and human studies consistently show better survival 
with HBOT (75) in profound hemorrhage.  Relying on Henry’s Law and Boerema’s 
experiment, massive amounts of oxygen would be delivered to exsanguinating soldiers 
by its dissolution in the soldier’s plasma.  In the 1960’s major hospitals in the United 
States and Europe utilized Henry’s law to hyperoxygenate babies with congenital heart 
disease undergoing cardiac surgery. In the absence of the soon to be invented heart-
lung bypass machine the dissolved oxygen provided surgeons longer operating times 
during cardiac standstill.  In a MASH unit soldiers could be rapidly compressed to 3 ATA 
on 100% oxygen in hyperbaric chambers while awaiting or in the process of receiving 
blood transfusions. Using air breaks between oxygen administration periods they can 
remain at this pressure for 3-4 hours, 3-4 times per day (75).  The reduction of time in 
the shock state would pay dividends in decreased morbidity and mortality. In addition, in 
times of mass casualties that overwhelm the blood supply and surgical capabilities, 
HBOT could be delivered until blood is available or while the soldier is in flight to 
another MASH. Alternatively, critical soldiers with massive ongoing bleeding could be 
placed in a hyperbaric operating room and receive the benefits of life without blood 
while time is bought for surgical control of bleeding and blood transfusions.  The natural 
extension of this application is to those soldiers who have cardiac arrest from massive 
hemorrhage.  Should this event occur even minutes before or after arrival at the MASH 
unit soldiers could be compressed on oxygen while IV’s are placed, volume and blood 
are infused, and bleeding is controlled.  The precedent has been set for this in 
resuscitation from cardiac arrest in a drowned diver with decompression sickness 22 
minutes after loss of consciousness (76) and guinea pigs 15 minutes (77) and swine 25 
minutes post induced cardiac arrest (78).  While the human case was a partial 
exsangination and the animals had normal blood volume they suggest an untapped 
potential for application to soldiers.  The time has come to introduce to the military 
medical therapeutics arsenal both this potential and the more certain application to 
near-exsanguinated soldiers or soldiers in shock.   
The fifth area of impact for HBOT in acute military casualty treatment is reperfusion 
injury.  As mentioned above, reperfusion injury is a ubiquitous process post injury.  
Specifically, it is a secondary injury that occurs upon restoration of blood flow (23).  In 
the case of battlefield injuries it occurs with any blunt, blast, bullet, shrapnel, stab, 
electrical, burn, or other wound.  In addition, it causes tissue destruction post 
resuscitation from shock, upon release of any tourniquet placed to control bleeding in 



the field or in the operating room, and upon restoration of blood flow to re-attached 
limbs.  HBOT’s effect on reperfusion injury has been argued to be a generic drug that 
applies regardless of the affected organ system or species (25).  It appears to also be a 
dominant mechanism in the prevention of brain lipid peroxidation in the swine 
resuscitation experiments above (79).  When delivered in timely fashion after injury it 
protects the body from further reperfusion injury should the soldier have to undergo 
surgery or have other complications. Coupled with the known effects on bone healing 
and the ability to salvage marginally viable tissue HBOT has the potential to significantly 
reduce major amputations.  Overall, HBOT’s effect on reperfusion injury could be huge 
in military casualty management.  
In conclusion, HBOT is one of the most powerful drugs known to man.  Simultaneously, 
HBOT delivers the substrate of life, oxygen, for which there is no substitute. HBOT has 
profound beneficial effects on injury pathophysiologic processes that are common in 
military casualties.  Moreover, it has been shown to positively impact traumatic brain 
injury, compartment syndrome, burns, hemorrhage, and reperfusion injury.  These 
injuries and injury processes comprise the bulk of battlefield casualties.  With timely 
intervention of HBOT the morbidity and mortality of injured soldiers should substantially 
improve as they have in their civilian counterparts.  Past foreign military experience 
strongly suggests this benefit in extremity wounds and its our conviction that United 
States soldiers deserve nothing less.  This is the goal of the DoD-BIRR Project.  
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